

CHEMSPE

DOEMSPEEL

Autonomous Digital Labs Summit

April 1st, 2025

SciY⊕

Agenda

Time	Торіс	Speaker
13.30	Arrival, coffee	
14:00	Welcome	Stefan Müller, Chief Commercial Officer, Arcondis Bernd Gleixner, Divisional President Automation, Bruker
14:15	Keynote: Data-driven Automated & High-throughput screening	Paco Laveille, Managing Director SwissCAT+, ETH Zürich
14:45	Break-out sessions block 1	Break-out moderators
15:30	Coffee break	
15:50	Break-out sessions block 2	Break-out moderators
16:30	Keynote: Automation Connectivity and Digitalisation Concept for Roche Labs	Tom Kissling, Global pRED Lab Automation Partner, Roche
17:00	Break-out Summary	Break-out moderators
17:45	Closing	Christian Hebich, CEO, Arcondis
18:00	Networking with drinks and snacks	
19:00	End of the event	

A warm welcome from our side

Stefan Müller

Chief Commercial Officer Arcondis Holding Basel Stefan is Global Chief Commercial Officer and Managing Director Switzerland at Arcondis, with over 18 years of experience in life sciences. He also serves on the board of obvioTec AG, an AI-driven quality control start-up. A former high-performance javelin thrower, Stefan brings a passion for excellence, innovation, and teamwork to his leadership.

Bernd Gleixner

Division President Automation Bruker BioSpin Group Zurich & Basel Bernd held various roles in management, engineering and sales across industries - from Start Up to Corporate. Working for 9 years with Bruker and since March 2024 Managing Director of Chemspeed (a Bruker company). Stalking mountain streams in canton Grisons with a fly rod he learned persistence, resilience and creating opportunities.

SciY

The lab of the future is faster, smarter and cheaper

Augments scientist, enabling wider exploration, leading to greater innovation

▼ 25%	cost reduction ¹
▼ 10-20%	faster time to market ²
▲ 30-40%	increased productivity ³
▼ 30%	waste reduction ⁴

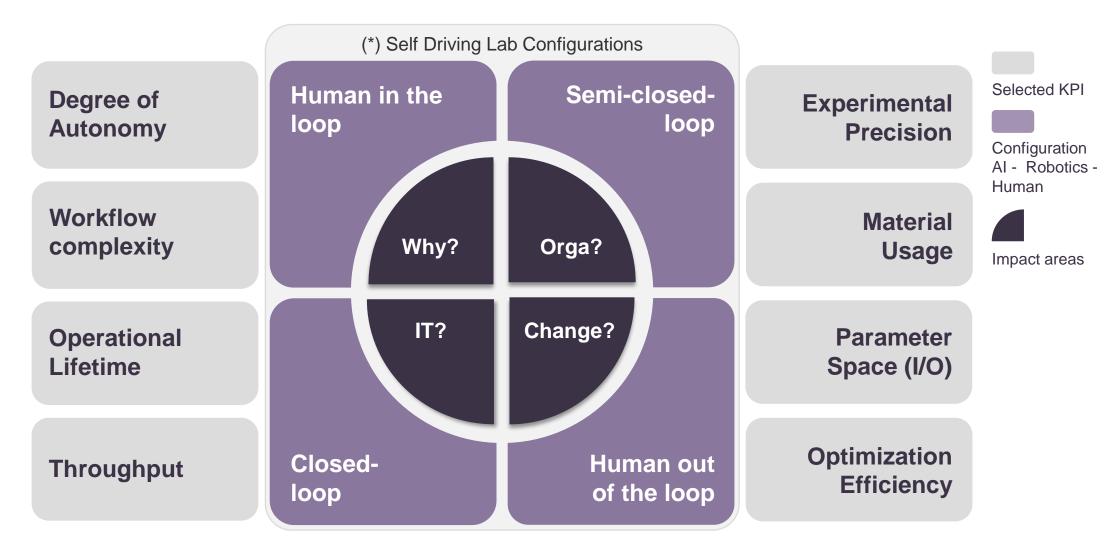
¹Baker, L., PhD. (2024, March 12). *Introducing the Lab of the Future*. Informatics From Technology Networks. https://www.technologynetworks.com/informatics/articles/introducing-the-lab-of-the-future-356898 ²Colback, L. (2024, November 27). AI and the R&D revolution. *Financial Times*. https://www.ft.com/content/648046c1-7fcd-43fb-819b-841f104396d9 ³Challenges to the Lab of the Future. (n.d.). https://labforward.io/test-blog-labtwin-new-2021/smart-lab-of-the-future-through-digital-transformation-0 ⁴Baker, L., PhD. (2024c, March 12). *Introducing the Lab of the Future*. Informatics From Technology Networks. https://www.technologynetworks.com/informatics/articles/introducing-the-lab-of-the-future-356898



SciY

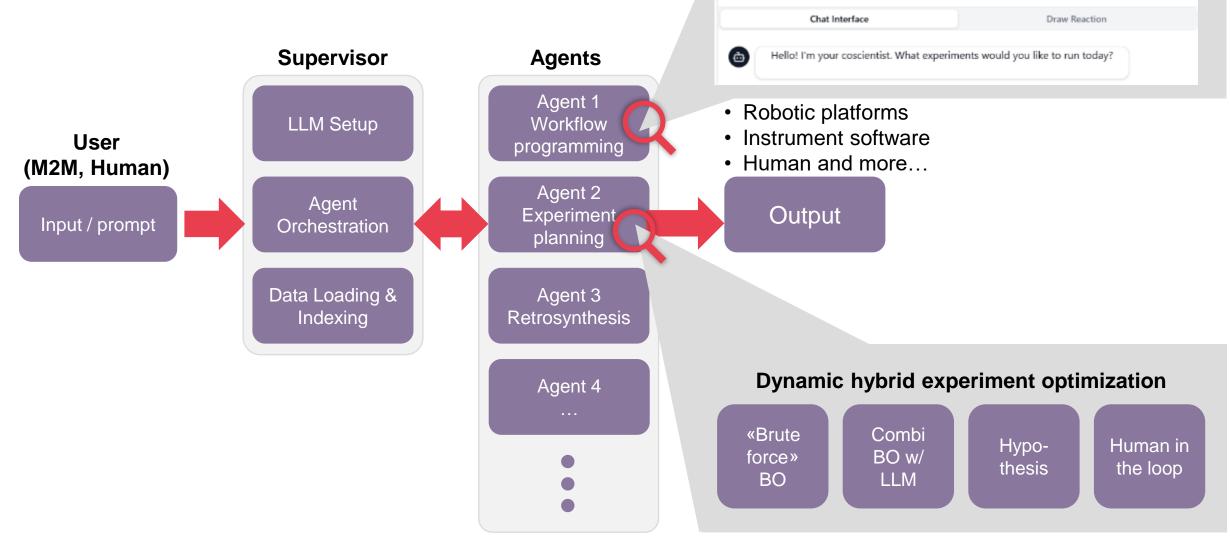
Six key components of a fully digitized lab

Arcondis provides process/workflow support for most components



BRUKER

The Rise of SDLs(*): challenges in designing optimal autonomous labs



Build on: Amanda A. Volk & Milad Abolhasani, Performance metrics to unleash the power of self-driving labs in chemistry and materials science, Nature 14. February 2024, Discussion with Pascal Miéville

The next step towards the augmented scientist? AI multi agents in your lab

Keynote: Data-driven Automated & High-Throughput Screening

"

This session will explore the SwissCAT+ East platform at ETH Zurich, a cutting-edge, data-driven facility for catalyst discovery and optimization. We will dive into its high-throughput capabilities in catalyst synthesis, characterization, and testing, highlighting the seamless integration of a robust data management system. A key focus will be on Bayesian Optimization in closed-loop experimentation, accelerating the screening of vast chemical spaces with minimal human intervention. Finally, a compelling case study on CO_2 -to-methanol hydrogenation will showcase how this approach condenses years of catalyst development into weeks, paving the way for next-generation AI-driven research workflows.

Paco Laveille

Managing Director SwissCAT+ ETH Zurich

Break-out and collaborate

TOPIC #1

Automated Qualification & Validation for Digital Labs

MODERATOR

Pascal Lauener, Chief Digital Officer, Arcondis

Connected & Self-driving Labs Trends

MODERATOR

Anna Codina, Senior Director, Strategy @ BD, SciY

in Anna Codina

TOPIC #3

Lab of the Future Data Strategy

MODERATOR Mark Polinkovsky, Head of Data Science Services, Arcondis

in Mark Polinkovsky

TOPIC #4

Al for Autonomous Digital Labs

MODERATORS Mathias Cherbuin CTO Chemspeed Loic Roch

CTO/Co-Founder Atinary

in <u>Mathias Cherbuin</u> Loïc Roch

EXECUTION

- All break-outs repeated twice
- You have pre-registered to two breakouts out of the four, please follow your color codes
- Each break-out lasts 40 minutes
 - Starts with 5 minutes introduction
 - Followed by an interactive discussion about experiences, best-practices, challenges, and opportunities
- Discussion results will be documented and presented at the end of the event

Breakout session #1 Automated Qualification & Validation for Digital Labs

Pascal Lauener

Chief Digital Officer, Arcondis AG

- - **Director Software Engineering**
 - Senior Vice President Global IT
 - **DevOps Sr Project Lead**
 - Lead DevOps Architect

- We've conquered 99% automation in Computer System Validation for software—so why are labs still stuck in the slow lane? It's time to break through the barriers.
- In this workshop we will discuss what are the blockers to bring test automation, infrastructure as code, and DevOps best practices like Continuous Integration (CI)/Continuous Deployment (CD) to lab validation.
- Get inspired by real-world success stories, tackle automation roadblocks, and walk away with actionable strategies to revolutionize your lab workflows.
- Whether you are a lab pro, software engineer, or quality specialist, this session is your ticket to the future of validation!

SciY

Problem statement

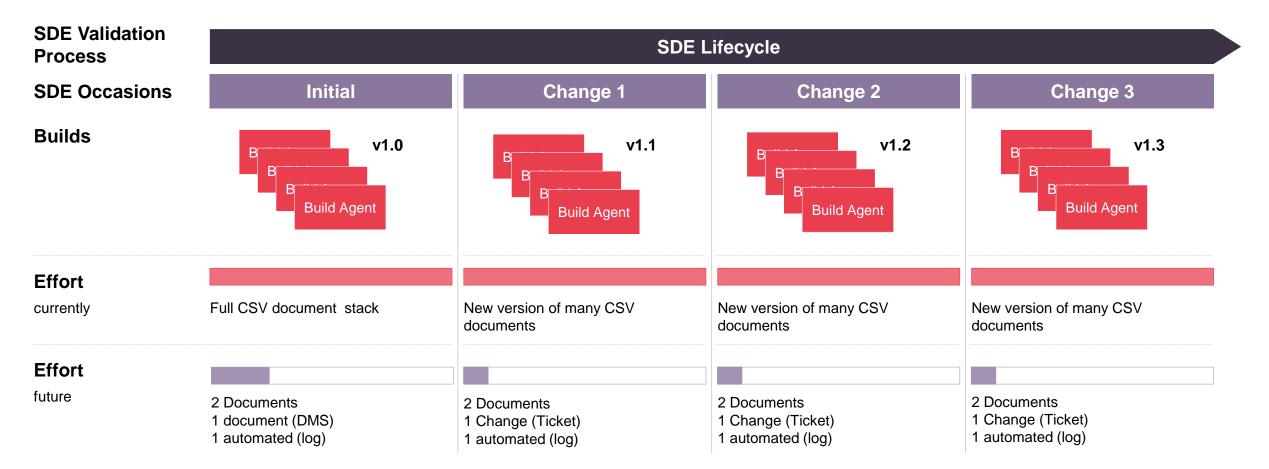
Manual handling of CSV files leading to errors and inconsistencies. Manual handling of CSV files are time-consuming due to the manual writing, reviewing, and approval of documents. Normally, a lot of CSVrelated data is already produced during the software development process, but it is not used for the CVS documents. The manual process hinders the ability to release or update more frequently.

SciY

Old way vs new way of CSV example

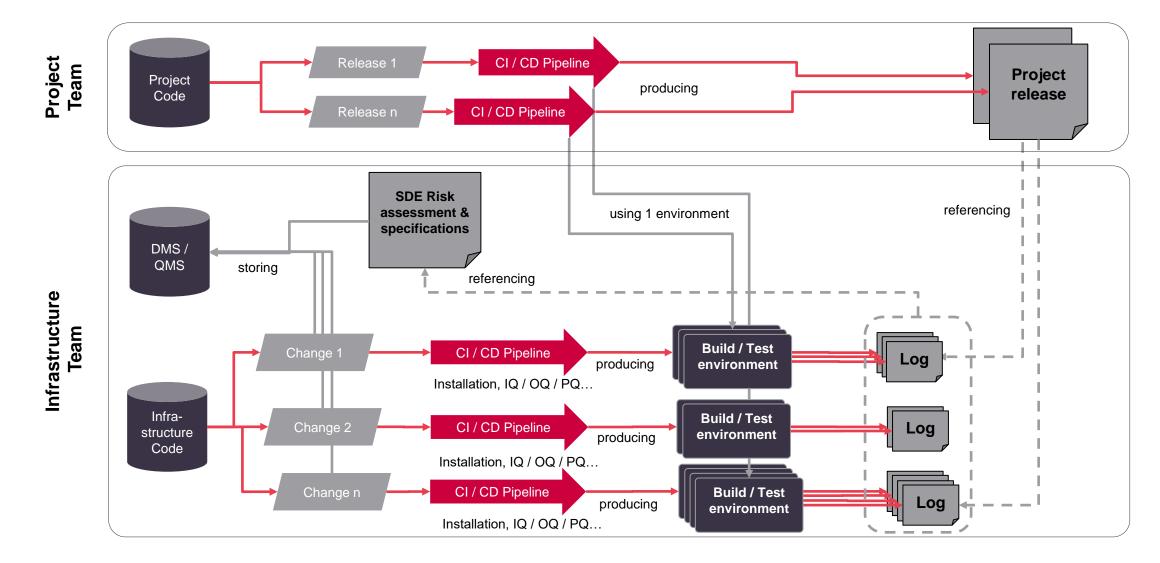
Changing the way of SDE Validation

Risk Assessment Validation Plan Design Specification (DS) Traceability Matrix Test Plan Test Scripts/Protocols (IQ, OQ, PQ, UAT) Test Summary Repots Validation Summary Reports Validation Summary Reports	Old way		New way		
Risk Assessment Risk Assessment Validation Plan Validation Plan Design Specification (DS) Design Specification (DS) Traceability Matrix Traceability Matrix Test Plan Test Scripts/Protocols (IQ, QQ, PQ, UAT) Test Summary Repots Test Summary Repots Validation Summary Reports (VSR) Validation Summary Reports	Release 1.0	Release X.Y	Release 1.0	Release X.Y	
Validation Plan Validation Plan Design Specification (DS) Design Specification (DS) Traceability Matrix Traceability Matrix Test Plan Test Plan Test Scripts/Protocols (IQ, OQ, PQ, UAT) Test Scripts/Protocols (IQ, OQ, PQ, UAT) Test Summary Repots Validation Summary Repots Validation Summary Reports Validation Summary Reports		Change Control Documentation	Change Control Documentation	Change Control Documentation	
Validation Plan Validation Plan Design Specification (DS) Design Specification (DS) Traceability Matrix Traceability Matrix Test Plan Test Scripts/Protocols (IQ, OQ, PQ, UAT) Test Summary Repots Test Summary Repots Validation Summary Reports (VSR) Validation Summary Reports (VSR)	Risk Assessment	Risk Assessment			
Design Specification (DS) Design Specification (DS) Traceability Matrix Traceability Matrix Test Plan Test Plan Test Scripts/Protocols (IQ, OQ, PQ, UAT) Test Scripts/Protocols (IQ, OQ, PQ, UAT) Test Summary Repots Test Summary Reports Validation Summary Reports Validation Summary Reports Validation Summary Reports Validation Summary Reports	Validation Plan	Validation Plan	should not be changed		
Test Plan Test Plan Test Scripts/Protocols (IQ, OQ, PQ, UAT) Test Scripts/Protocols (IQ, OQ, PQ, UAT) Test Summary Reports Test Summary Reports Validation Summary Reports (VSR) Validation Summary Reports (VSR)	Design Specification (DS)	Design Specification (DS)	during the project)		
Test Scripts/Protocols (IQ, OQ, PQ, UAT) Test Scripts/Protocols (IQ, OQ, PQ, UAT) CSV Report 1.0 (created automatically) CSV Report 1.0 (created automatically) Test Summary Reports (VSR) Validation Summary Reports (VSR) Valida	Traceability Matrix	Traceability Matrix			
PQ, UAT) PQ, UAT) CSV Report 1.0 (created automatically) CSV Report X.Y Test Summary Reports (VSR) Test Summary Reports (VSR) Validation Summary Reports (VSR) Validation Summary Reports	Test Plan	Test Plan			
Test Summary Repots Test Summary Repots Validation Summary Reports (VSR) Validation Summary Reports (VSR)					
(VSR) (VSR)	Test Summary Repots	Test Summary Repots	(created automatically)	(created automatically)	
Change Control Documentation Change Control Documentation					
Change Control Documentation	Change Control Documentation	Change Control Documentation			



SciY

Old way vs new way of CSV example


Changing the way of SDE Validation

Best practice for automated CSV in software development

Detailed project setup and approach

SciY

Questions for Discussion

TOPIC #1

What do you think is the biggest blocker to do automated validation right now?

TOPIC #2

What do you think will be tricky to automate (from a technical point of view)?

TOPIC #3

What do you think would be the biggest issue with this approach during an external audit?

TOPIC #4

What do you think would be the biggest challenge in changing internal processes to enable automation validation?

Breakout summary

TOPIC #1

Change & Compliance:

Managing change, knowledge fluctuation, and regulatory sharing is essential.

• Human Involvement: Employees need to understand, support, and oversee changes.

Resources & Support: Financial and managerial backing is necessary for success.

TOPIC #2

IT Security

٠

- System
 Compatibility
- Validation Complexity: IQ is easy, OQ is medium, and PQ is difficult.

TOPIC #3

Regulatory & Audit
 Complexity:

Automation may be difficult for auditors to understand.

TOPIC #4

- People & Systems: Dedicated experts, proper system validation, crossdepartment integration, and clear QA control are required.
- Costs vs. Saving: When does it make sense to implement?

Breakout session #2 Connected & Self-Driving Lab Trends

Anna Codina

Senior Director Strategy & Business Development, SciY

- Senior Director Biopharma
- Principal Scientist, Analytical R&D
- Structural Biology (PostDoc)
- Antibody Structure Characterisation
- Quality Control (Internship)

PhD in Chemistry and Structural Biology

- Imagine a lab that thinks, learns, and optimises itself—a true selfdriving laboratory! The age of autonomous labs is here, powered by cutting-edge AI, automation, and next-gen data systems.
- In this electrifying session, we will reveal how smart labs are augmenting scientist, slashing inefficiencies, and delivering significant return of investment.
- But it's not all smooth sailing—what are the biggest adoption hurdles, and how can you overcome them?
- If you're looking to future-proof your lab and stay ahead of the innovation curve, don't miss this session!

С Ш WHAT IS A CONNECTE SELF-DRIVING LAB?

Image AI generated (01Apr25) to illustrate content of the following paper:

Adam, D., The Automated Lab of Tomorrow, PNAS, 121(17), 2024

A different, interesting concept is described in "Digitalization, automation and online testing: Embracing smart quality control", McKinsey & Company, 2021

TED AB? WHAT IS A CONNECT SELF-DRIVING LAE




Image AI generated (01Apr25) to illustrate content of the following article:

<u>A Blueprint for Supporting Self-</u> Driving Labs in the UK, UKDayOne, 2024

Automation & Digitalization for R&D / QC | Bruker

Images AI generated (01Apr25) to illustrate content of the article: <u>The 2050 Lab of the Future: Sustainability, The Analytical Scientist</u>

SciY

Questions for Discussion

TOPIC #1

MACRO TRENDS

What are the scientific and technology macro/mega trends in your industry/area?

What are the connections between the macro trends and self-driving labs?

TOPIC #2

TRENDS in SDL

What are the trends with respect to connected and selfdriving labs?

Where are were today?

Where are the gaps between today and tomorrow? How do we fill the gap?

TOPIC #3

BARRIERS in SDL

What are the adoptions barriers towards SDL?

How do we win? (decrease the adoption barriers) and what are the gains? What if we do not do it?

What strategies and partnerships?

TOPIC #4

HUMANS in SDL

How do you see the role of humans in the SDL today?

How do you see the role of humans in the SDL of tomorrow / the future? (e.g., in 10 years, time)

Breakout summary

TOPIC #1

- Automation
- Miniaturization
- Connectivity
- AI

TOPIC #2

Trends:

•

•

- Automation
- Data Strategy
- Status:
 - Island w/o connectivity
 - Lack of data management / digitalization
- Gaps:
 - Connectivity
 - Data standards
 - Skills /
 Knowledge
 - Cost

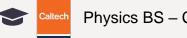
TOPIC #3

- Barriers:
 - Change mgmt
 - Regulations
 - Equipment reliability
 - Cost
 - No data standards
 - No proof of value
 - Instrument
 orchestration
 - Skills
- Proposed approach:
 - Modularity
 - Partnership

TOPIC #4

- Humans will not be eliminated
- Humans are augmented, focus on strategic and intellectual tasks
- Processes which are
 not yet automatable

Breakout session #3 Lab of the Future Data Strategy


Mark Polinkovsky

Global Head of Data Excellence. Arcondis AG

StemProte

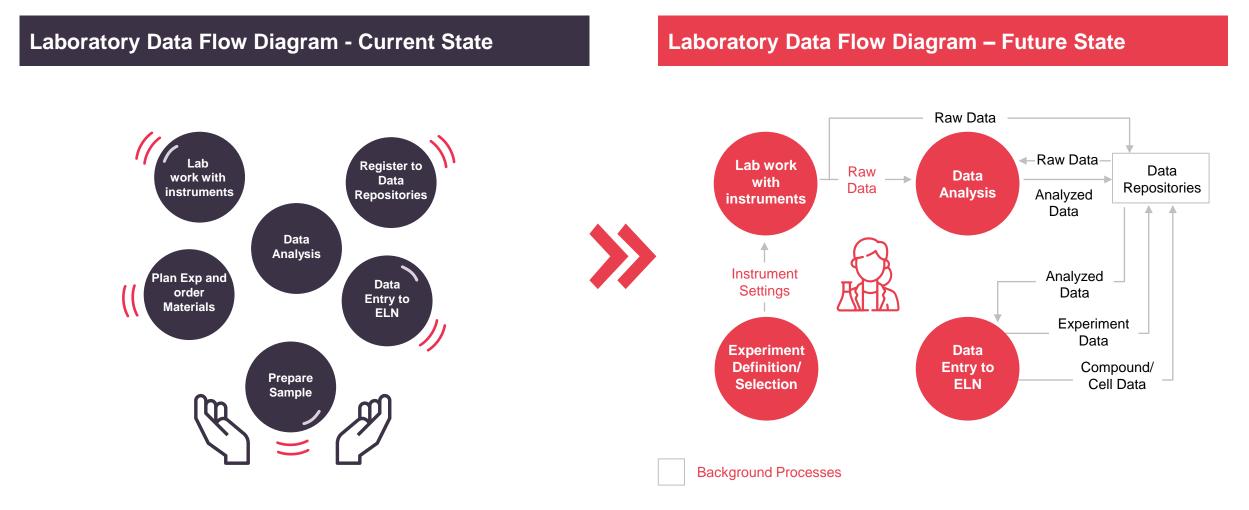
GSK


Director of Science and Technology Data, Innovation, and Automation Investigator

Physics BS – Caltech

Biophysics PhD – UCSD

- Your lab's data should work for you, not against you. But too • many labs are drowning in disconnected, unstructured, and underutilized data. It's time to fix that.
- In this power-packed session, we will show you how to build a futureproof data strategy—one that enables seamless system integration, bulletproof governance, and real-time AI-driven insights.
- We will also tackle compliance pitfalls and regulatory must-knows, ٠ ensuring your lab stays ahead in a fast-evolving digital landscape.
- Ready to take control of your data and accelerate your lab's transformation? Join us!

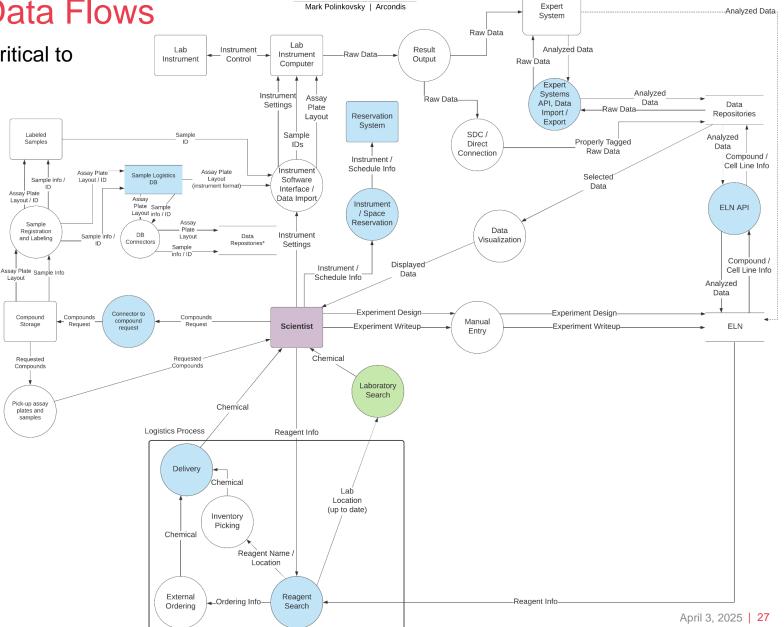


CHEMSPEED

Data Strategy as a Prerequisite for the Digital Lab

Automated data movement between systems allows scientists to focus on their research

Laboratory Data Flow Diagram - Future State

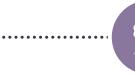

CHEMSPEED

More Details of Future Lab Data Flows

How and why systems use and share data is critical to the functioning of the Digital Lab

Lab-specific Data Strategy components to consider

- Instrument & System Integration Seamless connectivity between lab instruments, sensors, and software
- Regulatory Compliance & Data Integrity Adherence to FDA 21 CFR Part 11, ISO 17025, ALCOA+ principles, and other regulations
- Lab Workflow Automation Automating sample tracking, experiment logging, and approvals
- Data Standardization & FAIR Principles Ensuring consistent data formats and metadata
- Real-Time Data Processing & Analytics Al/MLdriven insights, dashboards, and predictive analytics
- Cybersecurity & Data Protection Encryption, access controls, and cyber threat mitigation
- Scalability & Future-Proofing Cloud-based infrastructure, multi-site collaboration, and emerging tech adoption
- Data Utilization for Scientific Insights Al-driven research, digital twins, and cross-functional collaboration



Elements and Process for Creating the Data Strategy

Elements to Consider:

Data Integration:

Labs often generate data from various sources and formats, making it difficult to integrate and analyze comprehensively. How to get data from instruments in a reasonable way?

Data Quality:

Ensuring the accuracy, reliability, and consistency of data is crucial for meaningful analysis and reproducibility. (e.g. Does "sample" have the same meaning for all systems?)

Data Security and Privacy:

Protecting sensitive data from unauthorized access and ensuring compliance with regulatory standards is essential

Data Storage:

Managing large volumes of data and ensuring secure, long-term storage can be challenging

Data Sharing:

Facilitating seamless data sharing among researchers and systems while maintaining data integrity and security is vital

Process for creating the data strategy:

Define Assess Engage Objectives State Stakeholders	Develop Governance Framework	Integrate Data Systems	Implement Analytics Tools	Ensure Scalability	Monitor and Improve
---	------------------------------------	------------------------------	---------------------------------	-----------------------	------------------------

Questions for Discussion

TOPIC #1

How do you gain support for modifying the existing lab data strategy?

What stakeholders in the organization need to be involved?

TOPIC #2

How do you ensure having the right resources for the data strategy implementation?

What new skills do you need from the people implementing the strategy?

TOPIC #3

What needs to change in traditional data strategies to prepare for the autonomous lab?

How do you make sure that those points are considered?

TOPIC #4

What special considerations are there for GxP labs?

High-throughput or other specialty labs?

Breakout summary

TOPIC #1

- Needs to be top-down driven, but involve people in the lab
- Demonstrate Value / ROI
- Involve multiple sites
- Compatibility vs
 Compartmentalization

TOPIC #2

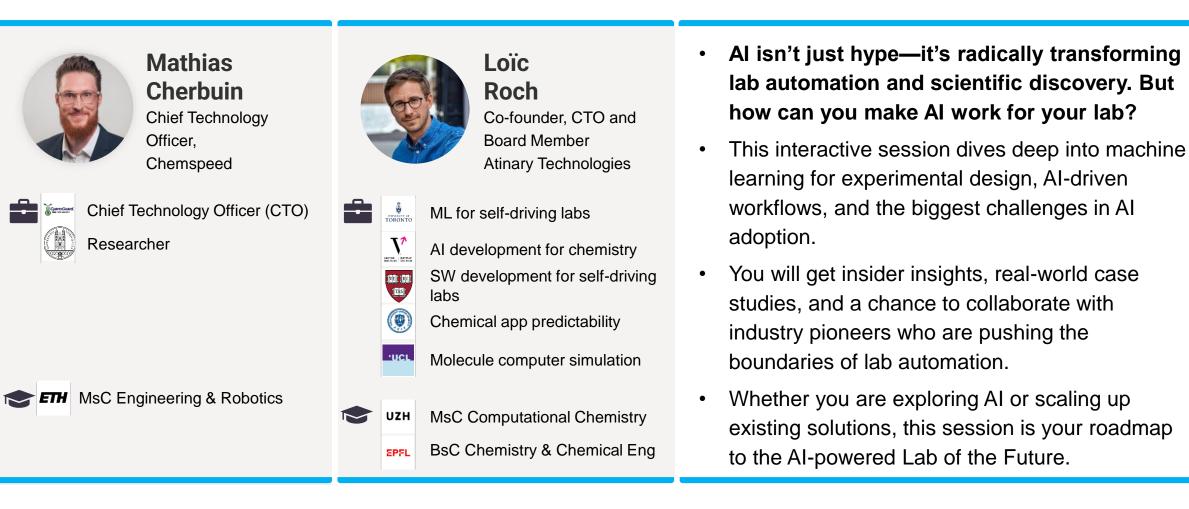
٠

- Change Management is essential
 - Proactive communication
 - Show benefits
- Involve support / service groups – IT, solution providers, professional service co's

TOPIC #3

- Strategy needs to be E2E
- Governance, Standardization, controlled vocabulary
- Unified Data model
- FAIR, digital data by first intent
- Getting support demonstrate the benefits, OCM

TOPIC #4


- Strict documentation, validation processes and qualified personnel is needed in GxP labs to ensure compliance
- Human accountability
 at end
- Different levels of compliance requirements → different strategies
- Which data to store and how for future use?

Breakout session #4 AI for Autonomous Digital Labs

| 31

SciY

Al for Autonomous Digital Labs

Problem Statement

The complexity and volume of scientific data is outpacing traditional analysis methods Manual laboratory processes remain time-consuming and error-prone

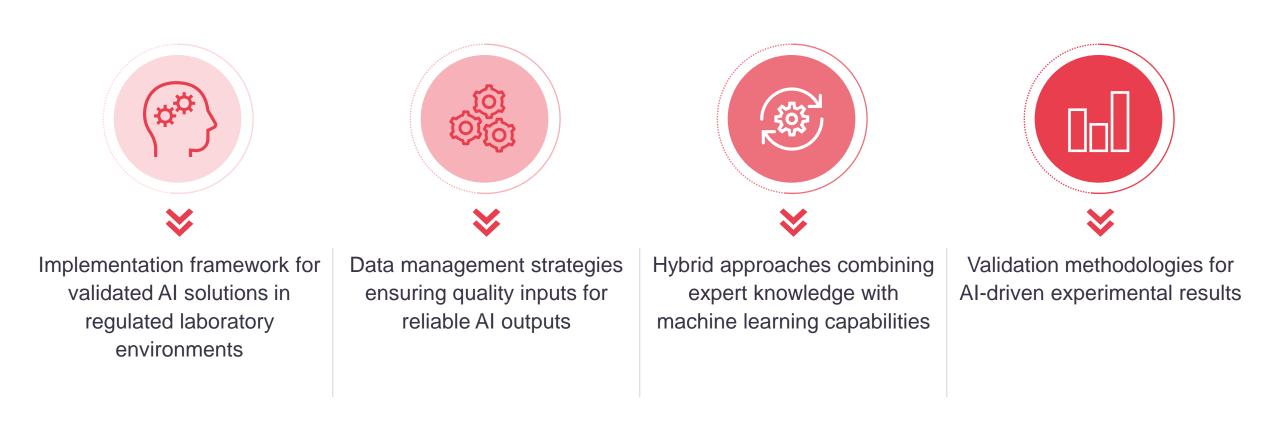
Decision-making in experiments often relies on human intuition rather than data-driven approaches Labs struggle to implement AI solutions that are both effective and validated for scientific use

Methodological Approach (Part 1)

Integration of machine learning algorithms for experimental design and optimization

Automated data analysis pipelines that identify patterns human researchers might miss

Predictive modeling to forecast experimental outcomes and suggest refinement


Real-time decision-making systems that adapt protocols based on incoming results

Methodological Approach (Part 2)

SciY

Questions for Discussion

TABLE #1

How have AI technologies already changed your laboratory workflows, and which specific AI applications have delivered the most tangible value in your autonomous lab environment?

TABLE #2

What skills and team compositions do you find most effective when integrating AI into traditional lab environments, and how are you addressing the talent gap in this specialized intersection of domains?

TABLE #3

How can we establish effective human-AI collaboration models where LLMs propose novel experimental designs while scientists maintain appropriate oversight and validation of the process?

TABLE #4

What advancements in AI technology could further revolutionize autonomous labs/your lab and how might AI-driven autonomous labs/your lab impact the future of scientific research and discovery including risks and limitations?

Breakout summary

TOPIC #1

- Still some work to become robust and reliable
- Data needs to be in Al-ready format to maximize efficiency

TOPIC #2

•

- Identify internal champion to support the implementation of automation and AI learning path
 - Lack of broad implementation of Al tools

TOPIC #3

- Increasing confidence in models with time and transparency
- Need to integrate validation checkpoints

TOPIC #4

- 'We are dreaming big but living in a paper world'
- Explainability

Keynote: Automation Connectivity and Digitalisation Concept for Roche Labs

"

The session will dive into the transformative power of lab digitalization, showcasing how cutting-edge technologies are revolutionizing R&D. We will discover the critical role of industry standards in lab automation for seamless integration and scalability. You will gain insights into the key success factors for implementing AI in R&D—turning potential into real-world impact. Explore finally a compelling case study on Roche's AC/DC Concept, revealing how it accelerates digital adoption and drives more efficient, effective lab operations.

Tom Kissling

Global pRED Lab Automation Partner, Roche

Closure

- A big thanks to all participants, speakers and the org team
- Key take-aways
 - Digitalisation will not go away & automation will be a substantial part of future labs
 - There is an important human factor to take into account
 - Capacity building and change management are key
- Let's work together to make Autonomous Digital Labs a reality. We Arcondis and Bruker – are here to support you.
- Stay and join us for refreshments!

Christian Hebich

Chief Execution Officer Arcondis AG, Basel